Anticipatory DTW for Efficient Similarity Search in Time Series Databases

نویسندگان

  • Ira Assent
  • Marc Wichterich
  • Ralph Krieger
  • Hardy Kremer
  • Thomas Seidl
چکیده

Time series arise in many different applications in the form of sensor data, stocks data, videos, and other time-related information. Analysis of this data typically requires searching for similar time series in a database. Dynamic Time Warping (DTW) is a widely used high-quality distance measure for time series. As DTW is computationally expensive, efficient algorithms for fast computation are crucial. In this paper, we propose a novel filter-and-refine DTW algorithm called Anticipatory DTW. Existing algorithms aim at efficiently finding similar time series by filtering the database and computing the DTW in the refinement step. Unlike these algorithms, our approach exploits previously unused information from the filter step during the refinement, allowing for faster rejection of false candidates. We characterize a class of applicable filters for our approach, which comprises state-of-the-art lower bounds of the DTW. Our novel anticipatory pruning incurs hardly any overhead and no false dismissals. We demonstrate substantial efficiency improvements in thorough experiments on synthetic and real world time series databases and show that our technique is highly scalable to multivariate, long time series and wide DTW bands.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Similarity Retrieval In Music Databases

Audio music is increasingly becoming available in digital form, and the digital music collections of individuals continue to grow. Addressing the need for effective means of retrieving music from such collections, this paper proposes new techniques for contentbased similarity search. Each music object is modeled as a time sequence of high-dimensional feature vectors, and dynamic time warping (D...

متن کامل

SSH (Sketch, Shingle, & Hash) for Indexing Massive-Scale Time Series

Similarity search on time series is a frequent operation in large-scale data-driven applications. Sophisticated similarity measures are standard for time series matching, as they are usually misaligned. Dynamic Time Warping or DTW is the most widely used similarity measure for time series because it combines alignment and matching at the same time. However, the alignment makes DTW slow. To spee...

متن کامل

Quantizing time series for efficient similarity search under timewarping

Indexing Time Series Data is an interesting problem that has attracted much interest in the research community for the last decade. Traditional indexing methods organize the data space using different metrics. For time series, however, there are some cases when a metric is not suited for properly assessing the similarity between sequences. For instance, to detect similarities between sequences ...

متن کامل

Faster Sequential Search with a Two-Pass Dynamic-Time-Warping Lower Bound

The Dynamic Time Warping (DTW) is a popular similarity measure between time series. The DTW fails to satisfy the triangle inequality and its computation requires quadratic time. Hence, to find closest neighbors quickly, we use bounding techniques. We can avoid most DTW computations with an inexpensive lower bound (LB Keogh). We compare LB Keogh with a tighter lower bound (LB Improved). We find ...

متن کامل

Efficient processing of similarity search under time warping in sequence databases: an index-based approach

This paper discusses an effective processing of similarity search that supports time warping in large sequence databases. Time warping enables finding sequences with similar patterns even when they are of different lengths. Previous methods for processing similarity search that supports time warping fail to employ multi-dimensional indexes without false dismissal since the time warping distance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PVLDB

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2009